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If a space-time is timelike or null geodesically incomplete but cannot be embedded 
in a larger space-time, then we say that it has a singularity. There are two types of 
singularities in the space-time manifold. First one is called the Big Bang singularity. 
This type of singularity must be interpreted as the catastrophic event from which 
the entire universe emerged, where all the known laws of physics and mathematics 
breakdown in such a way that we cannot know what was happened during and 
before the big bang singularity. The second type is Schwarzschild singularity, which 
is considered as the end state of the gravitational collapse of a massive star which 
has exhausted its nuclear fuel providing the pressure gradient against the inwards 
pull of gravity. Global hyperbolicity is the most important condition on causal 
structure space-time, which is involved in problems as cosmic censorship, 
predictability, etc. Here both types of singularities in global hyperbolic space-time 
manifold are discussed in some details. 
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INTRODUCTION 

In the Schwarzschild metric and the Friedmann, Robertson-Walker (FRW) cosmological 
solution contained a space-time singularity where the curvature and density are infinite, 
and known all the physical laws would break down there. In the Schwarzschild solution 

such as a singularity is present at  0r  which is the final fate of a massive star (Mohajan 

2013a), whereas in the FRW model it is found at the epoch 0t  (big bang), which is the 

beginning of the universe, where the scale factor  tS  also vanishes and all objects are 

crushed to zero volume due to infinite gravitational tidal force (Mohajan 2013b). 

Schwarzschild metric of Einstein equation is established assuming a star isolated from all 
the gravitating bodies. It is also important for the interpretation of black hole. 
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Schwarzschild established his metric by considering asymptotically flat solutions to 
Einstein’s equation (Mohajan 2013a). 

Friedmann, Robertson-Walker (FRW) model is established on the basis of the assumption 
that the universe is homogeneous and isotropic in all epochs. Even though the universe is 
clearly inhomogeneous at the local scales of stars and cluster of stars, it is generally argued 
that an overall homogeneity will be achieved only at a large enough scale of about 14 billion 
light years. In the 1960s, Stephen W. Hawking and Roger Penrose discovered the 
singularities in the FRW model (Hawking and Ellis 1973, Mohajan 2013b). Hawking and 
Penrose (1970) explain that singularities arise when a black hole is created due to 
gravitational collapse of massive bodies. A space-time singularity which cannot be observed 
by external observers is called a black hole. Poisson (2004) describes that when the black hole 
is formulated due to gravitational collapse, then space-time singularities must occur. 

The existence of space-time singularities follows in the form of future or past incomplete 
non-spacelike geodesics in the space-time. Such a singularity would arise either in the 
cosmological scenarios, where it provides the origin of the universe or as the end state of 
the gravitational collapse of a massive star which has exhausted its nuclear fuel providing 
the pressure gradient against the inwards pull of gravity (Mohajan 2013c). 

We consider a manifold M which is smooth, i.e., M is differentiable as permitted by M. We 
assume that M is Hausdorff and paracompact. Global hyperbolicity is the strongest and 
physically most important concept both in general and special relativity and also in relativistic 
cosmology. This notion was introduced by Jean Leray in 1953 (Leray 1953) and developed in 
the golden age of general relativity by A. Avez, B. Carter, Choquet-Bruhat, C. J. S. Clarke, 
Stephen W. Hawking, Robert P. Geroch, Roger Penrose, H. J. Seifert and others (Sánchez 2010). 

Each generator of the boundary of the future has a past end point on the set one has to 
impose some global condition on the causal structure. This is relevant to Einstein’s theory 
of general relativity, and potentially to other metric gravitational theories. In 2003, 
Antonio N. Bernal and Miguel Sánchez showed that any globally hyperbolic manifold M 
has a smooth embedded 3-dimensional Cauchy surface, and furthermore that any two 
Cauchy surfaces for M are diffeomorphic (Bernal and Sánchez 2003, 2005). 

Despite many advances on global hyperbolicity however, some questions which affected 
basic approaches to this concept, remained unsolved yet. For example, the so-called folk 
problems of smoothability, affected the differentiable and metric structure of any globally 
hyperbolic space-time M (Sachs and Wu 1977). The Geroch, Kronheimer, and Penrose 
(GKP) causal boundary introduced a new ingredient for the causal structure of space-
times, as well as a new viewpoint for global hyperbolicity (GKP 1972). 

In this study, we describe how the matter fields with positive energy density affect the 
causality relations in a space-time and cause focusing in the families of non-spacelike 
trajectories. Here the main phenomenon is that matter focuses the non-spacelike geodesics 
of the space-time into pairs of focal points or conjugate points due to gravitational forces. 

SOME RELATED DEFINITIONS 

In this section, we give some definitions which are related to our study (Mohajan 2013e). 
The definitions will provide necessary information to understand the paper perfectly.   

Manifold: A manifold is essentially a space which is locally similar to Euclidean space in 
that it can be covered by coordinate patches but which need not be Euclidean globally. 
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Map OO :  where 
nRO   and 

mRO   is said to be a class  0rC r
 if the following 

conditions are satisfied. If we choose a point (event) p of coordinates  nxx ,...,1
 on O and its image 

 p  of coordinates  nxx  ,...,1

 
on O  then by 

rC  map, we mean that the function   is r-times 

differential and continuous. If a map is 
rC  for all 0r  then we denote it by 

C ; also by 
0C  map 

we mean that the map is continuous (Hawking and Ellis 1973, Mohajan 2016). 

An n-dimensional, 
rC , real differentiable manifold M is defined as follows: 

M has a 
rC atlas   , U  where U  are subsets of M and   are one-one maps of the 

corresponding U  to open sets in 
nR  such that (figure 1);  

i. U  cover M i.e., 


UM  , 

ii. If  UU , then the map      UUUU  :1  is a 

rC
 
map of an open subset of  

nR  to an open subset of 
nR . 

Condition (ii) is very important for overlap of two local coordinate neighborhoods. Now 

suppose U  and U  overlap and there is a point p in  UU  . Now choose a point q in 

  U  and a point r in   U . Now   pr 1

 ,      qrp    1

   . Let 

coordinates of q be  nxx ,...,1

 
and those of r be  nyy ,...,1

. At this stage we obtain a 

coordinate transformation; 

 

Figure 1: The smooth maps 
1

    on the n-dimensional Euclidean space 
nR giving the 

change of coordinates in the overlap region. 

 nxxyy ,...,111   
 

 nxxyy ,...,122   
 

…    …     … 
 

 nnn xxyy ,...,1 . 
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The open sets U , U  and maps 
1

    and 
1

    are all n-dimensional, so that 
rC

 
manifold M is r-times differentiable and continuous, i.e., M is a differentiable manifold 
(Hawking and Ellis 1973). 

Hausdorff Space: A topological space M is a Hausdorff space if for a pair of distinct points  

Mqp ,  there are disjoint open sets U  and U  in M such that Up  and Uq   

(Mohajan 2016).   

Paracompact Space: An atlas   ,U  is called locally finite if there is an open set 

containing every Mp  which intersects only a finite number of the sets U . A 

manifold M is called a paracompact if for every atlas there is locally finite atlas   ,O  

with each O  contained in some U . Let 
V  be a timelike vector, and then 

paracompactness of manifold M implies that there is a smooth positive definite Riemann 

metric K  defined on M (Joshi 1996).        

Compact Set: A subset A of a topological space M is compact if every open cover of A is 
reducible to a finite cover (Mohajan 2016).    

Tangent Space: A 
kC -curve in M is a map from an interval of R in to M (figure 2). A 

vector  
 0tt 

  which is tangent to a 
1C -curve  t  at a point  0t  is an operator 

from the space of all smooth functions on M into R and is denoted by (Joshi 1996); 

 
 
 

 

     
s

tfstf
Lim

t
f

f
t st

t























0

0
0

. 

 
Figure 2: A curve in a differential manifold (Mohajan 2013d). 

If  ix   are local coordinates in a neighborhood of  0tp   then,  

      
   0

0

.

t

i

i

t x

f

dt

dx
t
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 
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
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
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Thus, every tangent vector at Mp  can be expressed as a linear combination of the 

coordinates derivates,    
p

n
p xx 




 ,...,1 . Thus, the vectors  ix
  span the vector 

space pT . Then the vector space structure is defined by      YfXffYX   . 

The vector space pT is also called the tangent space at the point p.  

      A metric is defined as; 


 dxdxgds 2

      (1) 

where g  is an indefinite metric in the sense that the magnitude of non-zero vector 

could be either positive, negative or zero (Mohajan 2013d). Then any vector pTX   is 

called timelike, null, spacelike or non-spacelike respectively if; 

      0,  ,0,  ,0,  XXgXXgXXg ,   0, XXg .  (2) 

Orientation: Let B be the set of all ordered basis  ie  for pT , the tangent space at point p. 

If  ie  and  je  are in B, then we have 
i

i

jj eae   . If we denote the matrix  ija  then 

  0det a . An n-dimensional manifold M is called orientable if M admits an atlas 

 iiU ,  such that whenever  ji UU
 

then the Jacibian, 0det 













j

i

x

x
J , 

where  ix  and  jx 
 
are local coordinates in iU  and jU  respectively. The Möbious 

strip is a non-orientable manifold. A vector defined at a point in Möbious strip with a 
positive orientation comes back with a reversed orientation in the negative direction when 
it traverses along the strip to come back to the same point (Mohajan 2015). 

Space-time Manifold: General Relativity models the physical universe as a 4-dimensional 
C  Hausdorff differentiable space-time manifold M with a Lorentzian metric g of signature 

  ,,,  which is topologically connected, paracompact and space-time orientable. These 

properties are suitable when we consider for local physics. As soon as we investigate global 
features then we face various pathological difficulties such as the violation of time 
orientation, possible non-Hausdorff or non-papacompactness, disconnected components of 
space-time, etc. Such pathologies are to be ruled out by means of reasonable topological 
assumptions only (Mohajan 2013d). However, we like to ensure that the space-time is 

causally well-behaved. We will consider the space-time Manifold  gM , , which has no 

boundary. By the word ‘boundary’ we mean the ‘edge’ of the universe which is not detected 
by any astronomical observations. It is common to have manifolds without boundary; for 

example, for two-spheres 
2S  in 

3R  no point in 
2S  is a boundary point in the induced 

topology on the same implied by the natural topology on 
3R  (Mohajan 2013d). All the 

neighborhoods of any 
2Sp  will be contained within 

2S  in this induced topology. We 

shall assume M to be connected i.e., one cannot have YXM  , where X and Y are two 
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open sets such that YX . This is because disconnected components of the universe 

cannot interact by means of any signal and the observations are confined to the connected 
component wherein the observer is situated (Mohajan 2014a). It is not known if M is simply 
connected or multiply connected. Manifold M is assumed to be Hausdorff, which ensures 
the uniqueness of limits of convergent sequences and incorporates our intuitive notion of 
distinct space-time events (Joshi 1996). 

Hypersurface: In the Minkowski space-time 
22222 dzdydxdtds  , the surface 

0t  is a three-dimensional surface with the time direction always normal to it. Any other 

surface constant t  is also a spacelike surface in this sense. Let S be an  1n -dimensional 

manifold. If there exists a 
C  map MS :

 
which is locally one-one i.e., if there is a 

neighborhood N for every Sp  such that   restricted to N is one-one, and 
1  is a 

C  as 

defined on  N , then  S  is called an embedded sub-manifold of M. A hypersurface S of 

any n-dimensional manifold M is defined as an  1n -dimensional embedded sub-manifold 

of M. Let pV  be the  1n -dimensional subspace of pT  of the vectors tangent to S at any

Sp  from which follows that there exists a unique vector 
p

a Tn   and is orthogonal to all 

the vectors in pV
 
(Mohajan 2013d). Here 

an  is called the normal to S at p. If the magnitude of 

an  is either positive or negative at all points of S without changing the sign, then 
an  could be 

normalized so that 1ba

ab nng . If 1ba

ab nng  then the normal vector is timelike 

everywhere and S is called a spacelike hypersurface. If the normal is spacelike everywhere on S 
with a positive magnitude, S is called a timelike hypersurface. Finally, S is null hypersurface if 

the normal 
an  is null at S (Mohajan 2015). 

BASIC CONCEPT OF GENERAL RELATIVITY 

The covariant differentiations of vectors are defined as; 








 AAA  ,;

      (3a)  



 AAA  ,;       (3b) 

where semi-colon denotes the covariant differentiation and coma denotes the partial 
differentiation (Mohajan 2014a). 

By (3b) we can write; 



 ARAA  ;;;;

,     (4) 

where  



















  ;;R    (4a) 

is a tensor of rank four and called Riemann curvature tensor. From (4) we observe that the 
curvature tensor components are expressed regarding the metric tensor and its second 
derivatives. From (4a) we get;  
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  0
R .       (5) 

Taking inner product of both sides of (4a) with g  one gets covariant curvature 

tensor; 




















































xx

g

xx

g

xx

g

xx

g
R

2222

2

1
+  









 g . (6) 

Contraction of curvature tensor (6) gives Ricci tensor; 




 RgR  .      (7) 

Further contraction of (7) gives Ricci scalar; 


 RgR ˆ .       (8) 

From which one gets Einstein tensor as; 

RRG 






 

2

1
       (9) 

where   0;  



 GGdiv . 

The space-time  gM ,  is said to have a flat connection if and only if; 

0
R .       (10) 

This is the necessary and sufficient condition for a vector at a point p to remain unaltered 
after parallel transported along an arbitrary closed curve through p. This is because all 
such curves can be shrunk to zero, in which case the space-time is simply connected 
(Hawking and Ellis 1973). 

The energy momentum tensor 
T is defined as; 

  uuT 0        (11) 

where 0  
is the proper density of matter, and if there is no pressure. A perfect fluid is 

characterized by pressure  xpp  , then; 

    pguupT   .     (12) 

The principle of local conservation of energy and momentum states that; 

0; 
T .       (13) 

The most appropriate tensor of the form required is the Einstein’s tensor (9); then 
Einstein’s field equation can be written as (Mohajan 2014b); 
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



T

c

G
RgR

4

 8

2

1
 .     (14) 

where 
21311 skgm10673.6 G  is the gravitational constant and 

810c m/s is the 

velocity of light. Einstein introduced a cosmological constant  0  for static universe 

solutions as; 





T

c

G
gRgR

4

 8

2

1
 .    (15) 

In relativistic unit G = c = 1, hence in relativistic units (15) becomes; 

  TRgR  8
2

1
  .                  (16) 

It is clear that divergence of both sides of (15) and (16) is zero. For empty space 0T  

then  gR  , so that; 

0R  for 0       (17)  

which is Einstein’s law of gravitation for empty space. 

CAUSAL STRUCTURE OF SPACE-TIME MANIFOLD 

In Lorentzian geometry causality plays an important role, as it displays a relativistic 
interpretation of space-time for both special and general relativity. Causality also appears 
as a fruitful interplay between relativistic motivations and geometric developments. 
Causal space-time is established at the end of the 1970s, after the works of Carter, Geroch, 
Hawking, Kronheimer, Penrose, Sachs, Seifert, Wu and others (Hawking and Sachs 1974).  

No material particle can travel faster than the velocity of light. Hence, causality fixes the 
boundary of the space-time topology. We assume that the timelike curves to be smooth; 
with future-directed tangent vectors everywhere strictly timelike, including its end-points. 
A causal curve is a curve in space-time which is nowhere spacelike. A causal curve is 
continuous but not necessarily everywhere smooth; its tangent vectors are either timelike 
or null. A causal curve will required end-points if it can be extended as a causal curve 
either into the past or the future. If a causal curve can be extended indefinitely and 
continuously into the past then it is called past-inextensible. The future-inextensible curve 
is defined similarly. If a causal curve is both past and future-inextensible then it is called 
simply inextensible (Hawking and Penrose 1970).  

An event x chronologically precedes another event y, denoted by yx  , if there is a 

smooth future directed timelike curve from x to y. If such a curve is non-spacelike then x 

causally precedes y, i.e., yx  . The chronological future  xI 
 is the set of all points of 

the space-time M that can be reached from x by future directed timelike curves. We can 

think of  xI 

 
as the set of all events that can be influenced by what happens at x. Now 

 xI 
 and  xI 

 
of a point x are defined as (figure 3),   
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   yxMyxI  / , and 

   xyMyxI  / . 

One can think of  xI 
 as the set of all events that can be influenced by what happens at 

x. The causal future (past) of x can be defined as; 

   yxMyxJ  / , 

          xyMyxJ  / . 

Also yx  and zy   or yx   and zy 
 
implies zx  . Hence, the closer and 

boundary of  xI 
 and past  xI 

 
of a point x are defined respectively as (Penrose 1972); 

   xJxI    and    yJxI    , where I  is a topological boundary and I  is the 

closure of I. 

 

Figure 3: Removal of a closed set from the space-time gives a causal future  xJ 

 
which 

is not closed. Events x and s are not causally connected. 

Similarly, the chronological (causal) future of any set MS   is defined as; 

   xISI
Sx





  , and 

   xJSJ
Sx





  . 

Similarly, we can define the past subsets of space-time. 

The boundary of the future is null apart from at S itself. If x is in the boundary of the 
future but is not in the closure of S there is a past directed null geodesic segment through x 
lying in the boundary. Hence the boundary of the future of S is generated by null 
geodesics that have a future end point in the boundary and pass into the interior of the 
future if they intersect another generator and the null geodesic generators can have past 
end points only on S (Hawking 1994). 
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Causally Convex Set: Let S and T be open subsets of a space-time  gM , , with ST   

then T is called causally convex in S if any causal curve contained in S with endpoints in T 

is entirely contained in T. In particular, when this holds for MS  , T is called causally 

convex. Again if T is causally convex in S and U is an open set such that SUT  , then 

T is causally convex in U (Minguzzi and Sánchez 2008). 

Future Set and Past Set: An open subset F is a future set if   FFI 
. The past set P is 

defined by   PPI 
. The boundary of a future set F is made of all events x such that 

  FxI 
 but Fx . If Fx   then of course Fx , since F is an open set. 

Achronal Set: A set S in M is said to be achronal if no two points Syx ,  may be joined 

by a piecewise timelike curve i.e., there do not exist Syx ,  such that  xIy  . Let F 

be a future set, then the boundary of F is a closed, achronal 
0C -manifold that is a 3-

dimensional embedded hypersurface. 

Domain of Dependence of a Set: The future domain of dependence (the future Cauchy 

development) of a spacelike three-surace S, denoted by  SD
, is defined as the set of all 

points Mx  such that every past-inextendible non-spacelike curve from x intersects S, 

i.e.,  SD
 = {x: every past-inextensible timelike curve through x meets S}. It is clear that 

   SJSDS    and S being achronal,       SISD . The past domain of 

dependence  SD
 is defined similarly. The full domain of dependence for S is defined 

as;      SDSDSD  
 
(Joshi 1993). 

Cauchy Surface: Let S be a closed achronal set. The edge of S is defined as a set of points 

Sx  such that every neighborhood of x contains  xIy   and  xIz   with a 

timelike curve from z to y which does not meet S. A partial Cauchy surface S is defined as 
an acausal set without an edge. So that no non-spacelike curve intersects S more than once, 
and S is a spacelike hypersurface. 

THE GLOBAL HYPERBOLIC SPACE-TIME 

A partially Cauchy surface is called a Cauchy surface S or a global Cauchy surface if 

  MSD 
 
i.e., if a set S is closed, achronal, and its domain of dependence is all of the space-

time,   MSD  . In another way, if   MSD   i.e., if every inextensible non-spacelike 

curve in intersect S, then S is said to be a Cauchy surface (figure 4). For a Cauchy surface S, 

  Sedge . The Cauchy development is the region of spacetime that can be predicted from 

data on S. Here S must be an embedded topological hypersurface and must be also crossed by 
any inextensible causal curve   (Hawking 1966a,b). The existence of a Cauchy hypersurface S 

implies that M is homeomorphic to St , and all Cauchy hypersurfaces are homeomorphic. 

Every non-spacelike curve in M meets S once and exactly once if S is a Cauchy surface. 
The relationship between the global hyperbolicity of M and the notion of Cauchy surface 
is shown in figure 4 (Hawking and Ellis 1973): 
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Figure 4: The spacelike hypersurface S is a Cauchy surface in the sense that for any p in 

future of S , all past non-spacelike curves from p intersect S. The same holds for all future-

directed curves from any point q in past of S. 

Time function is a continuous function RMt :  which increases strictly on any future-

directed causal curve. If the levels constant t  are Cauchy hypersurfaces, then t is a 

Cauchy time function. The space-time manifold has a Cauchy surface S.   

Globally Hyperbolicity 

In mathematical physics, global hyperbolicity is a certain condition on the causal structure 
of a space-time manifold. If M is a smooth connected Lorentzian manifold with boundary, 
we say it is globally hyperbolic if its interior is globally hyperbolic. Penrose has called 
globally hyperbolic space-times “the physically reasonable space-times” (Wald 1984). A 

space-time  gM ,
 
which admits a Cauchy surface is called globally hyperbolic. 

A space-time  gM ,  which admits a Cauchy surface is called globally hyperbolic. An open 

set O is said to be globally hyperbolic if, i) for every pair of points x and y in O the 
intersection of the future of x and the past of y has compact closure, i.e., if a space-time 

 gM ,  is said to be globally hyperbolic if the sets    yJxJ    are compact for all 

Myx ,  (i.e., no naked singularity can exist in space-time topology). In other words, it is a 

bounded diamond shaped region (diamond-compact) and ii) strong causality holds on O, 
i.e., there are no closed or almost closed time like curves contained in O (figure 4). Then it 

also satisfies that  xJ 
 and  yJ 

 are closed Myx  , . More precisely, consider two 

events x, y of the space-time  gM , , and let  yxC ,  be the set of all the continuous curves 

which are future-directed and causal and connect x with y (Hawking and Ellis 1973). 

Minkowski space-time, de Sitter space-time and the exterior Schwarzschild solution, 
Friedmann, Robertson-Walker (FRW) cosmological solutions and the steady state models are 
all globally hyperbolic. The Kerr solution is not globally hyperbolic, since it represents rotating 
model, i.e., not a static model. On the other hand anti de Sitter space-time and the Godel 
universe are not globally hyperbolic. The global hyperbolicity of M is closely related to the 
future or past development of initial data from a given spacelike hypersurface (Joshi 1996).  

The physical significance of global hyperbolicity comes from the fact that it implies that 
there is a family of Cauchy surfaces Σ(t) for globally hyperbolic open set O. A Cauchy 
surface for O is a spacelike or null surface that intersects every timelike curve in O once 
and only once. Let x and y be two points of O that can be joined by a timelike or null 
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curve, then there is a timelike or null geodesic between x and y which maximizes the 
length of timelike or null curves from x to y (Hawking 1994).  

Cauchy Horizons of a Set 

Let S be a partial Cauchy surface. Then     MSDSDN  
 and N must be a 

proper subset of M. The boundary of N in M can be divided into two portions. Now 
suppose that the future Cauchy development was compact. This would imply that the 

Cauchy development would have a future boundary called the Cauchy horizon,  SH 
. 

Since the Cauchy development is assumed to be compact, the Cauchy horizon will also be 

compact. The  SH 
 and  SH 

 which are respectively called the future and past 

Cauchy horizons of S. We can write (Hawking and Penrose 1970); 

          SDxISDxxSH ,/  

                SDISD   . 

 SH 
 is defined similarly.  SH 

 
is an achronal closed set. Also we can write, 

      SDSISHI   . 

The Cauchy horizon will be generated by null geodesic segments without past end points. 
Even though M may not be globally hyperbolic and S is not a Cauchy surface, the region 

  SDInt 
 or   SDInt 

 is globally hyperbolic in its own right and the surface S 

serves as a Cauchy surface for the manifold  NInt . Thus  SH 
 or  SH 

 represents 

the failure of S to be a global Cauchy surface for M (figure 5). 

 
Figure 5: The space-time obtained by removing a point from the Minkowski space-time is not 

globally hyperbolic. The point q does not meet S in the past. The event  SDp  . The 

Cauchy horizon is the boundary of the shaded region which consists of points not in  SD
. 
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If every geodesic can be extended to arbitrary values of its affine parameter, then it is 
geodesically complete. If a timelike or causal curve can be extended indefinitely and 
continuously into the past (future), then it is called past-inextensible (future-inextensible). 

In globally hyperbolic space-times, there is a finite upper bound on the proper time 
lengths of non-spacelike curves two chronologically related events. Of course there is no 
lower limit of length for such curves except zero, because the chronologically related 
events can always be joined using broken null curves which could give an arbitrary small 
length curve between them. If S is Cauchy surface in globally hyperbolic space-time M, 
then for any point p in the future of S, there is a past directed timelike geodesic from p 
orthogonal to S which maximizes the lengths of all non-spacelike curves from p to S 
(figure 6). 

An important property of globally hyperbolic space-time that is relevant for the 
singularity theorems is the existence of maximum length non-spacelike geodesics between 
a pair of causally related events. In a complete Riemannian manifold with a positive 
definite metric any two points can be joined by a geodesic of minimum length and in fact 
such a geodesic need not be unique (Joshi 1996). (In a sphere paths of great circles are 
geodesics. Opposite poles can be joined by an infinite numbers of geodesics.) 

 
Figure 6: The spacelike hupersurface S is a Cauchy surface in the sense that for any p in 
future of S, all past directed non-spacelike curves from p intersect S. 

SPACE-TIME SINGULARITIES 

The existences of real singularities where the curvature scalars and densities diverge imply 
that all the physical laws break down. Let us consider the metric;  

2222

2

2 1
dzdydxdt

t
ds         (18) 

which is singular on the plane  0t . If any observer starting in the region  0t  tries to 

reach the surface 0t  by traveling along timelike geodesics, he will not reach at 0t  in 

any finite time, since the surface is infinitely far into the future. If we put  tt  ln  in 

0t  then (18) becomes (Mohajan 2013e); 

22222 dzdydxtdds        (19) 

with  t  which is Minkowski metric and there is no singularity at all (Clarke 

1986).  
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A timelike geodesic which, when maximally extended, has no end point in the regular 
space-time and which has finite proper length, is called timelike geodesically incomplete. 
Now we shall discuss some definitions related with the singularity (Clarke 1986). 

Definition: The generalized affine parameter (GAP) length of a curve   Ma ,0:  

with respect to a frame,  

 3,2,1,0,  a
a
EE  

at   0  is given by; 

     dssEg

a

i
i

2
1

0

3

0

   











 E  

where 
ds

d
   is tangent vector and E(s) is defined by parallel propogation along the 

curve, starting with an initial value E(0).  

Definition: A curve   Ma ,0:  is incomplete if it has finite GAP length with respect 

to some frame E at  0 . If   E , then if we take any other frame E  at  0  we 

have    E . This is because the corresponding parallel propogated frames satisfy 

(Mohajan 2013e);  

j

j

i
i

ELE   

for a constant Lorentz matrix L and hence; 

EE   L , 

where    2
1

 ij

i XLSupL . 

Definition: A curve   Ma ,0:  is termed inextensible if there is no curve 

  Mb  ,0:  with ab   such that     a,0 .  This is equivalent to saying that 

there is no point p in M such that   ps   as as  , i.e.,   has no end point in M. 

Definition: A space-time is incomplete if it contains an incomplete inextensible curve. By 
the above definitions we can say that a space-time is called incomplete if it contains an 
incomplete timelike inextensible curve. The Friedman ‘Big Bang’ models are geodesically 
incomplete, since the curve defined by (Mohajan 2013e); 

    stSs 
0

   

  
i

s Constant, i = 1, 2, 3  
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is a geodesic which is incomplete, having no endpoint in M as  tSs  . Minkowski space is 

not incomplete. The region mr 2  in the Schwarzschild metric is incomplete, while the 

region mr 20    is not a space-time, since the metric is not defined at mr 2 .  

Definition: An extension of a space-time  gM ,  is an isometric embedding MM :  

where  gM ,  is a space-time and   is onto a proper subset of M . By the above 

definition, Schwarzschild metric is not singular at mr 2  by Kruskal-Szekeres extension 

(Kruskal 1960, Szekeres 1960). A space-time is termed extensible if it has an extension.  

Definition: A space-time is singular if it contains an incomplete curve   Ma ,0:  

such that there is no extension MM :  for which    is extensible. 

SCHWARZSCHILD SINGULARITY 

The Schwarzschild metric which represents the outside metric for a star is given by 
(Mohajan 2013e); 

 2 2sin222
1

2
12 

2
12  ddrdr

r

m
dt

r

m
ds 




















   (20) 

If 0r  is the boundary of a star then 0rr 
 
gives the outside metric as in (20). If there is no 

surface, (20) represents a highly collapsed object viz. a black hole of mass m (will be 
discussed later). The metric (20) has singularities at r = 0 and r = 2m, so it represents 

patches mr 20   or  rm2 . If we consider the patches mr 20   then it is 

seen that as r tends to zero, the curvature scalar, 

6

248

r

m
RR 


 

tends to 
 
and it follows that r = 0 is a genuine curvature singularity i.e., space-time 

curvature components tend to infinity (Mohajan 2013a). 

FRIEDMANN, ROBERTSON–WALKER (FRW) MODEL 

The FRW model plays an important role in Cosmology. This model is established on the 
basis of the homogeneity and isotropy of the universe as described above. The current 
observations give a strong motivation for the adoption of the cosmological principle 
stating that at large scales the universe is homogeneous and isotropic and, hence, its large-
scale structure is well described by the FRW metric. The FRW geometries are related to the 
high symmetry of these backgrounds. Due this symmetry numerous physical problems 
are exactly solvable, and a better understanding of physical effects in FRW models could 
serve as a handle to deal with more complicated geometries (Mohajan 2013b).  

In   ,,, rt  coordinates the Robertson-Walker line element is given by; 

   










 2 2sin2

1
 2

2

2
222  ddr

kr

dr
tSdtds   (21) 
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where k is a constant which denotes the spatial curvature of the three-space and could be 
normalized to the values +1, 0, –1. When k = 0 the three-space is flat and (21) is called 
Einstein de-Sitter static model, when k = +1 and k = –1 the three-space are of positive and 
negative constant curvature; these incorporate the closed and open Friedmann models 
respectively (figure 7).  

Let us assume the matter content of the universe as a perfect fluid then by (14) and (15), 
solving (21) we get; 

  034
3

 p
S

S



, and     (22)  

  0
3

8
3

22

2











S

k

S

S



     (23) 

where we have considered 0 . If 0  and 0p  then 0S . So S = constant and 

0S  indicates the universe must be expanding, and 0S  indicates contracting 

universe. The observations by Hubble of the red-shifts of the galaxies were interpreted by 
him as implying that all of them are receding from us with a velocity proportional to their 

distances from us that is why the universe is expanding. For expanding universe 0S , 

so by (22) and (23) we get 0S . Hence S  is a decreasing function and at earlier times 

the universe must be expanding at a faster rate as compared to the present rate of 
expansion. But if the expansion be constant rate as like the present expansion rate at all 
times then, 

 

Figure 7: The behavior of the curve S(t) for the three values k = –1, 0, +1; the time 0tt 
 
is 

the present time and 1tt 
 
is the time when S(t) reaches zero again for k = +1 . 

0

0

H
S

S

tt













.       (24) 

Now 
1

0

H  implies a global upper limit for the age of any type of Friedmann models. So 

the age of the universe will be less than 
1

0

H . The quantity 0H  is called Hubble constant 
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and at any given epoch it measures the rate of expansion of the universe. By observation 

0H  has a value somewhere in the range of 50 to 120 kms–1Mpc–1. 

At S = 0, the entire three-surface shrinks to zero volume and the densities and curvatures 
grow to infinity. Hence, by FRW models there is a singularity at a finite time in the past. 
This curvature singularity is called the big bang (Islam 2002, Hawking and Ellis 1973). 

CONCLUSION 

In this study we have discussed the global hyperbolic space-time manifold and the 
singularities therein. Here we have discussed two types of singularities: i) Big Bang 
singularity, which is found in Friedmann, Robertson-Walker’s cosmological solution, and 
considers as the beginning of the universe; ii) Black hole type singularity is found in the 
Schwarzschild solution, which is the final fate of a massive star. In the beginning of the 
study we have provided some elementary definitions of differential geometry and 
topology. Then, we have discussed the basic concepts of general relativity. We have also 
discussed the causal structure of space-time manifold. Then we have discussed global 
hyperbolicity to make the paper interesting to the readers.  
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